A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves.

نویسندگان

  • M D Groves
  • M Haragus
  • S M Sun
چکیده

The existence of a line solitary-wave solution to the water-wave problem with strong surface-tension effects was predicted on the basis of a model equation in the celebrated 1895 paper by D. J. Korteweg and G. de Vries and rigorously confirmed a century later by C. J. Amick and K. Kirchgässner in 1989. A model equation derived by B. B. Kadomtsev and V. I. Petviashvili in 1970 suggests that the Korteweg-de Vries line solitary wave belongs to a family of periodically modulated solitary waves which have a solitary-wave profile in the direction of motion and are periodic in the transverse direction. This prediction is rigorously confirmed for the full water-wave problem in the present paper. It is shown that the Korteweg-de Vries solitary wave undergoes a dimension-breaking bifurcation that generates a family of periodically modulated solitary waves. The term dimension-breaking phenomenon describes the spontaneous emergence of a spatially inhomogeneous solution of a partial differential equation from a solution which is homogeneous in one or more spatial dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilump Symmetric and Nonsymmetric Gravity-Capillary Solitary Waves in Deep Water

Multilump gravity-capillary solitary waves propagating in a fluid of infinite depth are computed numerically. The study is based on a weakly nonlinear and dispersive partial differential equation (PDE) with weak variations in the spanwise direction, a model derived by Akers and Milewski [Stud. Appl. Math., 122 (2009), pp. 249–274]. For a two-dimensional fluid, this model agrees qualitatively we...

متن کامل

Nonlinear gravity–capillary waves with forcing and dissipation

We present a study of nonlinear gravity–capillary waves with surface forcing and viscous dissipation. Based on a viscous boundary layer approximation near the water surface, the theory permits the efficient calculation of steady gravity–capillary waves with parasitic capillary ripples. To balance the viscous dissipation and thus achieve steady solutions, wind forcing is applied by adding a surf...

متن کامل

Steady Periodic Water Waves with Unbounded Vorticity: Equivalent Formulations and Existence Results

In this paper we consider the steady water wave problem for waves that possess a merely Lr−integrable vorticity, with r ∈ (1,∞) being arbitrary. We rst establish the equivalence of the three formulations the velocity formulation, the stream function formulation, and the height function formulation in the setting of strong solutions, regardless of the value of r. Based upon this result and using...

متن کامل

Capillary-gravity and capillary waves generated in a wind wave tank: observations and theories

Short water surface waves generated by wind in a water tunnel have been measured by an optical technique that provides a synoptic picture of the water surface gradient over an area of water surface (Zhang & Cox 1994). These images of the surface gradient can be integrated to recover the shape of the water surface and find the two-dimensional wavenumber spectrum. Waveforms and two-dimensional st...

متن کامل

The equilibrium dynamics and statistics of gravity–capillary waves

Recent field observations and modelling of breaking surface gravity waves suggest that air-entraining breaking is not sufficiently dissipative of surface gravity waves to balance the dynamics of wind-wave growth and nonlinear interactions with dissipation for the shorter gravity waves of O(10) cm wavelength. Theories of parasitic capillary waves that form at the crest and forward face of shorte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 360 1799  شماره 

صفحات  -

تاریخ انتشار 2002